If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+5X-200=0
a = 1; b = 5; c = -200;
Δ = b2-4ac
Δ = 52-4·1·(-200)
Δ = 825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{825}=\sqrt{25*33}=\sqrt{25}*\sqrt{33}=5\sqrt{33}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5\sqrt{33}}{2*1}=\frac{-5-5\sqrt{33}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5\sqrt{33}}{2*1}=\frac{-5+5\sqrt{33}}{2} $
| (x+5)(4x+1)=15 | | 1/2^x+2=4^2x | | Z(3+i)=0 | | 2^(n-1)=1000 | | 9(t-6)+5t=7(2t+4)-13 | | 3x/2-15/24=5x/8 | | -3(3s-4)-12=-3(8s+4)-5 | | 18=k*9*15^2 | | -2(5s-5)-10=-3(6s+6)-5 | | 5x-1/2+2x-3/4=5 | | 75=1/2h(19+31) | | 2y^2+9y-10=0 | | 2-2=13x+6x | | (3x+1)^2=169/4x | | 6k-27=5k-15 | | -6(x+2)-12=17+1 | | 8-a=5a-3 | | /2x+1=3/ | | x=9x^2-15x+25 | | 6+4x-x^2=0 | | Y+40y=38 | | 8m-29=52 | | 15-2x/10-2(x+1)=2(x-2) | | 16x-13(x)^1/2=-2 | | 2x^2/11=10 | | 3/2x+4=7-(-1/2x) | | 2x211=102x211=10 | | 12k+6=k+16 | | 22y=4 | | (X-4)(2x-4)=-164 | | (X-4)(2x-4)=x-164 | | z+3z=8–2z+10 |